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Abstract—Ultrasound (US)-guided percutaneous nephrolitho-
tomy is a surgical procedure for large kidney stone removal
through an incision in the patient’s back. To gain kidney
access, the surgeon steers a needle towards the kidney while
simultaneously controlling the position and orientation of a US
probe to keep the needle in the image plane. To successfully reach
the kidney while avoiding delicate structures, a significant level of
skill and precision is required. To alleviate the surgeon’s cognitive
workload, robot-assisted needle tracking can be implemented to
autonomously track the needle in the US images and adjust the
US probe’s position and orientation such that the same portion
of the needle is visible in the images.

This paper presents a US-guided visual servoing (VS) algo-
rithm to track the translation and rotation of a needle in a
plane. Image features representing the desired pose of the needle
in the image are defined, through which an interaction matrix
is devised to relate the rate of the change of the image features
in US images to the required position and orientation of the US
probe connected to a robotic manipulator. Experimental results
in 4 experimental scenarios in a water tank demonstrate the
capability of the proposed method in tracking the needle in real-
time with an accuracy of 2.6 mm with a control rate of 20 Hz.
Although VS has been used to track surgical targets in the past,
this paper proposes the first implementation of VS for needle
tracking in longitudinal US images subjected to 3-DOF motion
in a plane without any prior knowledge of needle trajectory or
additional position sensors.

Index Terms—Medical robotics, ultrasound imaging, visual
servoing, needle tracking, percutaneous nephrolithotomy, ultra-
sound guidance, biomedical imaging.

I. INTRODUCTION

Percutaneous nephrolithotomy (PCNL) is the gold standard
surgical treatment for large upper urinary tract calculi. In
PCNL, the surgeon makes a small incision in the patient’s
back and inserts a small calibre tube to access the kidney.
An endoscope is then passed down the tube into the kidney
to fragment and remove the kidney stones. Despite over 40
years of development, PCNL has a steep learning curve and is
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associated with a high risk of complications such as bleeding,
renal pelvis perforation, and colon and spleen injuries [1].

Kidney access during PCNL may be performed using dif-
ferent imaging modalities, including fluoroscopy, ultrasound
(US), or a combination of both. Fluoroscopy has been the pre-
ferred modality for kidney access in North America, however,
it exposes both patients and medical professionals to signifi-
cant levels of radiation [2]. Moreover, fluoroscopy only allows
for single-plane imaging, making accurate kidney puncture
challenging. Organs adjacent to the kidney such as the pleura
and the bowels are not visible during puncture, posing the
risk of accidental injury [3]. US-guided PCNL (usPCNL) is
the main alternative to fluoroscopy. US can detect radiolucent
stones, improve visualization of adjacent viscera, and gives
a clearer delineation of the anterior and posterior calyces in
a radiation-free setting [4]. However, usPCNL requires an
advanced level of dexterity to guide the needle toward the
stones while keeping it visible in the US image.

US-guided kidney access can be performed using longi-
tudinal or transverse images. In longitudinal imaging, the
needle appears as a line in the US image. The surgeon must
precisely coordinate the hand holding the US probe and the
hand holding the needle to keep the needle shaft aligned with
the imaging plane, while simultaneously visualizing the target.
If the needle tip is not visible in the image, the surgeon may
inadvertently puncture the surrounding organs. In transverse
imaging, the needle shaft is perpendicular to the imaging
plane and, therefore, the needle shaft is not visible in the
image. To guide the needle tip toward the target the surgeon
constantly adjusts the imaging plane by sweeping the probe
back and forth along the needle. In both modalities, parts of
the kidney are shadowed by the ribs, which further complicates
the procedure [5]. These complications are exacerbated by
potential misinterpretation of US images and lack of training,
often leading to inaccurate needle placement [1] and create a
steep learning curve with as few as 11% of urologists being
able to achieve kidney access themselves [2].

To alleviate the surgeon’s cognitive workload and the com-
plexity of usPCNL, one may consider methods to reduce the
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level of technical skills required to perform it. For example,
a needle guide may be used to help keep the needle in the
US imaging plane at the cost of limited dexterity [5]. Some
have considered augmented reality to help steer the needle
toward the calix [6], [7], while others have focused on robotic
assistance to facilitate kidney access [8], [9]. A common aspect
of these methods is the need to determine the position and
orientation of the needle in the images. For example, Chen
et al. [10] propose a neural network for needle detection that
uses a longitudinal and an orthogonal image to estimate the
needle pose in 3D. In [11], the concept is taken one step
further: optical flow is used to segment a cannula from 2D-
US images and translate the probe using a robotic arm in
predefined intervals to keep the needle centred in the image. In
[12] a robotic arm autonomously translates and orients the US
probe along a pre-defined needle trajectory. However, during
manual needle steering the position and orientation of the
needle are not known beforehand. Real-time adjustments to
the US probe position and orientation are therefore required
to ensure continuous visualization of the needle in the image.

A solution to the limitations highlighted above can be
sought in visual servoing (VS) - a technique employed to con-
trol the motion of a robot through visual information obtained
from a camera or a sensor. Its primary benefit is the ability
to accurately control the robot’s pose relative to an image
target or feature. For example, in [13], VS is combined with
US imaging to position a robot-actuated needle in the image
plane during percutaneous cholecystectomy. Haxthausen et al.
[14] show the feasibility of using VS with 2D US for semi-
automated scanning of peripheral arteries. In [15], model-free
VS is used to actuate a robot-controlled US probe to image
a desired cross-section of a static target. Nadeau et al. [16]
use graph-cut segmentation of three orthogonal US images to
extract image features from a target. A robot arm then controls
the in-plane motion of the US probe in the three orthogonal
image planes to image the target. In all these examples, the
position of the US probe is controlled to image a static target,
that is, VS is used for autonomous imaging rather than for
real-time tracking. However, during usPCNL the target (i.e.,
the needle) moves relative to the probe as the needle is steered
toward the kidney. While 3D US images may be used to track
the moving needle, 3D US is more complex than 2D, has a
much lower frame rate, and may not be suitable for real-time
needle steering [17], [18].

This paper proposes a new US-based VS algorithm for
longitudinal needle tracking using only 2D-US images. It
accounts for needle motion in 3 degrees-of-freedom (3-DOF),
that is, two in-plane translations and one in-place rotation. In
the proposed approach, the US probe is attached to a robotic
manipulator that is controlled to follow the 3-DOF motion
of the needle in a plane. This is accomplished by defining a
longitudinal image having the desired position and orientation
of the needle. Image features are then extracted from both the
desired image and real-time US images. Based on the error
between them, the algorithm determines the required linear and
angular speed of the US probe that minimize the difference

Needle shaft shaft orientation ( )

Needle-tip

shaft length ( )

Fig. 1. (a) Longitudinal US image of a needle in a water tank; (b) Binary
image of the needle showing the features used in the VS algorithm, i.e.,
the shaft length ℓ, the Cartesian position of the needle tip in the image
(xtip, ytip), and the needle shaft orientation θ.

between the desired and current image features. This ensures
that the needle shaft is always visible in the images as the
needle moves in a fixed plane. In contrast to the algorithms
described earlier, needle tracking is achieved in 3-DOF and
without any prior knowledge about the needle trajectory. The
method is computationally efficient and well-suited for real-
time needle steering. To the best of the author’s knowledge,
this paper proposes the first VS method for tracking a moving
needle using longitudinal US images with 3-DOF. This is
a crucial first step toward automating kidney access during
usPCNL procedure with real-time US image feedback.

The paper is organized as follows. Section 2 introduces
the proposed VS algorithm, the image features, and the robot
control law. The experimental setup is presented in Section
3. The US probe is connected to a robot arm and a second
robot is used to move the needle. While in usPCNL the
surgeon performs the needle steering, the second robot used
in this paper provides measurable movements to validate the
accuracy of the proposed algorithm. The needle and probe are
submerged in a water container so that both the needle and
probe can be moved freely. The feasibility of the proposed
method in in-plane needle tracking is then demonstrated for
4 different test scenarios in Section 4. Finally, in Section 5
a discussion of the obtained results and recommendations for
future work are presented.

II. VISUAL SERVOING FOR IN-PLANE NEEDLE IMAGING

Using longitudinal US images the surgeon must precisely
coordinate the position and orientation of the US probe so that
the needle shaft and the needle tip are visible at all times. As
the needle is advanced towards a target, the objective is to
maintain a constant needle pose in the US image.

The principle of US-based VS is to attach the probe to a
robot and move the robot to follow the motion of the needle.
The first step in the algorithm is to define a desired/target US
image and select appropriate features from both the desired
and real-time images that are time-variant and differentiable.
Fig. 1(a) shows a longitudinal sample image of the needle and
Fig. 1(b) shows the main features that can be associated with
it, including the needle length in the image ℓ, the position of
the needle tip in the image (xtip, ytip), and the orientation of
the needle shaft with respect to the US probe horizontal axis θ.
The choice of these features is essential to ensure appropriate
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performance of the robot controller, which must guarantee
that visual features extracted from the image converge to
the desired values [19]. This section details how these main
features are calculated in a 2D US image, and then formulates
an interaction matrix that relates the visual features’ time
variation to the robot’s end-effector velocities, i.e., the velocity
of the probe in 3-DOF. The interaction matrix is then employed
to design the VS controller.

A. Visual Features Definition
In a 2D image, features can be defined in terms of moments

of different orders. The general form for image moment of
order i+ j in a grayscale image is defined as:

mij =

∫∫
xiyjI(x, y)dxdy, (1)

where (x, y) are the coordinates of the image pixel and I(x, y)
is the intensity of each pixel. Like other VS applications,
only the shape of the object is important, i.e., the needle’s
cross-section. Thus, a binary threshold image segmentation
algorithm can be used to segment the needle from the US
image. Therefore, I(x, y) = 1 within the object’s contour
(indicated by S), and I(x, y) = 0 over the rest of the pixels
in the images. Thus, (1) simplifies to:

mij =

∫∫
S
xiyjdxdy. (2)

With a digital image, the double integral can be replaced by
a discrete sum defined as:

mij =
∑
S

xiyj (3)

The features representing the needle in the US image defined
in Fig. 1(b) can be written in terms of moments of orders up
to two. The position of the needle tip in the image is:

xtip = l cos θ

ytip =
m01

m00
+

1

2
l sin θ.

(4)

The needle shaft orientation with respect to the horizontal
imaging axis is:

θ =
1

2
arctan

(
2µ11

µ20 − µ02

)
, (5)

and the length of the needle shaft in the image is given by

l = 4

√
2

m00

(
µ20 + µ02 +

√
(µ20 − µ02)

2
+ 4µ2

11

)
(6)

where
µ11 = m11 − m10m01

m00

µ20 = m20 − m2
10

m00

µ02 = m02 − m2
01

m00
.

A vector containing all image features can now be defined as

s = [xtip ytip θ l]T (7)

It should also be noted that the image moments are defined in
the image frame, which coincides with the US probe frame.

B. Interaction Matrix Definition

The next step in the algorithm is to define a matrix Ls that
relates the temporal variation of the image features, that is the
first derivative of (7) with respect time ṡ, to the speed of the
US probe, so that:

ṡ = Lsv (8)

where Ls ∈ R4×3 is the interaction matrix and v =
[υx υy ωz]

T is a vector containing the translational velocity
of the probe on the needle’s imaging plane, and the angular
velocity of the probe about an axis perpendicular to that plane.

The time variation of image features in terms of probe
velocities can be written as:

ṡi =
∂si
∂vx

vx +
∂si
∂vy

vy +
∂si
∂ωz

ωz (9)

In order to calculate the partial derivatives in (9), the com-
mon approach is to use the time variation of image moments in
(2) in terms of probe velocities, and then using (4)-(6) to find
ṡ. However, in this application, the geometrical interpretation
of image features is used instead. The time variation of image
features is given directly as:

ẋtip = −vx + (l sin θ + ϵ cos θ)ωz

ẏtip = −vy − (xtip − ϵ sin θ)ωz

θ̇ = −ωz

l̇ = −(
√

1 + sin2 θ)vx + ϵωz

(10)

where 0 < ϵ ≪ 1. Finally, the interaction matrix relating the
time derivatives of the image features with the probe velocity
can be written as:

Ls =


−1 0 l sin θ + ϵ cos θ
0 −1 −xtip + ϵ sin θ
0 0 −1

−
√
1 + sin2 θ 0 ϵ

 (11)

C. Robot controller design

A classic control law widely used in VS determines the
control action, i.e., the velocity of the US probe, based on the
error observed between the desired features s∗ and the actual
time-variant image features s(t) calculated on the real-time
US images. Defining the error signal as e(t) = s∗ − s(t), the
VS control law to minimize the features’ error is:

vc = kpL
†
s (s

∗ − s) (12)

where vc is the probe’s velocity (i.e., the robot end-effector’s
velocity), kp ∈ R3×3 is a diagonal matrix including positive
control gains, and L†

s is the pseudo-inverse of the estimated
interaction matrix (Ls) calculated at each sample, which is
given by:

L†
s = LT

s

(
LsL

T
s

)−1
(13)

When using a correct estimation of Ls, the closed-loop
system is locally asymptotically stable [15]. Here, the desired
feature vector s∗ represents the desired cross-section image of
the needle, which in turn defines the desired pose of the robot
arm holding the US probe. A block diagram of the proposed
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Controller (9)
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Manipulator
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Robot's 
End-Effector
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US image

Binary
segmenttedbinary
US image

Robot Manipulator with Internal Velocity Control

s - s*s*

s

Ls

- -

Fig. 2. Block diagram of the proposed algorithm. Image features extracted from a desired US image and from real-time US image are multiplied by a
time-variant interaction matrix to determine the required speed of the US probe that makes the current feature tend to the desired image features.

needle tracking method is shown in Fig. 2. As discussed
earlier, a simple image processing algorithm is applied to the
US image to segment the needle and provide a binary image
to be used in the feature extraction algorithm.

III. EXPERIMENTAL PROCEDURE

In order to implement and validate the proposed method,
the experimental setup shown in Fig. 3 is used. In this
configuration, a 40-mm wide US probe (L15-7H40-A5 from
Telemed Ultrasound, Vilnius, Lituania) is attached to the end-
effector of 6-DOF robot arm (Meca500 from Mecademic,
Montréal, Canada) to image a 16-gauge needle. The US
probe communicates with an ArtUs Telemed US machine
and streams images in real-time at 50 Hz according to the
specifications given in Table I. In this paper, both the needle
and the US probe are submerged in a water tank to allow
the needle to move freely. In percutaneous surgeries, needle
steering is typically performed manually. However, in this
paper, a second robot manipulator controls needle movement
in the water tank, so that the motion of the needle and the
corresponding motion of the US probe can be measured and
compared.

For longitudinal, in-plane needle tracking, it is assumed that
the needle moves on a fixed plane and rotates about an axis
normal to that plane, that is, it has translational velocities υx,
υy , and angular velocity ωz . The features vector therefore
is s = [xtip ytip θ l]T . The interaction matrix Ls is
calculated assuming ϵ = 0.01, and the proportional control
gain is set to kp = diag(0.5, 0.5, 0.2). Binary threshold image
segmentation is applied to real-time US images to generate the
images that serve as the input to the image moments defined
(2), exactly as shown in Fig. 1b.

The algorithm is implemented on an Intel(R) Core i7-9700K
computer with a 3.60 GHz CPU and 64GB of RAM. Matlab
is used for both US image acquisition and robot control, with
a sampling rate of 20 Hz. Once the needle is positioned in the
water tank, the robot holding the US probe is moved manually
until the needle becomes visible in the US images. The target
image and target image features are extracted from Fig. 1b. As

Robot arm 2:
controlling the 

needle movement
US probe

Water tank
Needle

Robot arm 1:
controlling the 

US probe

Fig. 3. Experimental setup. The needle and the US probe are each connected
to a robot arm and submerged in a water tank. As robot 2 moves the needle in
a random sequence in a plane, robot 2 adjusts the position and orientation of
the US to minimize the error between the desired and actual image features.

TABLE I
ULTRASOUND IMAGE ACQUISITION PARAMETERS

frequency gain focus depth dyn. range power

10 MHz 79 % 14-21 mm 30 mm 72 dB −4 dB

one robot moves the needle in the water tank, the controller is
started to autonomously move the US probe so that the target
image is maintained, based solely on the US images and VS
algorithm.

To validate the feasibility of the proposed method, 4 test
scenarios that simulate real needle steering procedures in
usPCNL, are used:

• Scenario 1: The needle base is moved on a horizontal
path along the x-axis with a constant linear speed of υx =
4 mm/s (with υy = ωz = 0).

• Scenario 2: The needle base is moved on a straight line
in the x− y plane with constant linear speeds of υx = 4
mm/s and υy = −1 mm/s (with ωz = 0).

• Scenario 3: The needle shaft orientation around the z-
axis is changed with a constant angular velocity of ωz =
−0.6 deg/s so that the needle tip follows a curved path
in the x− y plane.
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(a)

(b)

(c)

(d)

Fig. 4. Calculated error between desired and actual image features during
VS-based tracking for xtip, ytip, θ, and l in each experimental scenario.

(desired image)

Fig. 5. US image of the needle during the tracking procedure in Scenario 4.

• Scenario 4: The needle base is moved on a path with
constant linear and angular velocities υx = 4 mm/s, υy =
−2 mm/s, and ωz = 0.6 deg/s.

These 4 scenarios are run for 15 seconds with a sampling time
of 50 ms. The feature error along with the position of each
robot arm is then evaluated.

IV. RESULTS AND DISCUSSION

Fig. 4 shows the calculated feature error in each scenario.
Despite the needle displacement, the US image remains stable,
with less than a 3 mm error in the needle tip position and
less than 1.5◦ error in the shaft orientation with respect to
the desired pose. These errors are sufficiently small to have a
negligible effect on the US images, as can be seen in Fig. 5.

60
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Needle displacement US probe displacement

y-
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 (
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)

600
-15

0

(b)

(a)

Fig. 6. Measured displacement of the needle’s base and the US probe in
Scenario 1 along the x-axis (a), and in Scenario 2 on the x− y plane (b).

Fig. 6 shows the measured displacement of the probe and
the needle. In scenario 1, the needle was displaced around 6
cm along the x-axis. As can be seen in Fig. 6(a), the US probe
followed the needle movement with an average displacement
error of -1.88 mm. In scenario 2, in addition to moving along
the x-axis, a 1.5 cm displacement on the y-axis is added to
the needle motion. Fig. 6(b) shows the displacement of the
needle and the US probe in the x− y plane are close, with an
average error of -2.59 mm.

In scenario 3, only the needle’s shaft orientation is changed,
which in turn changes the needle tip position. Fig. 7(a) shows
a schematic view of how the US probe tracks the needle and
keeps the desired features fix. Finally, in scenario 4 the needle
moved in all of its in-plane DOF, which resulted in the needle
tip following a curved path. Fig. 7(b) shows the initial and
final needle and US probe orientations, along with the path
followed by the US probe. The sequential US images recorded
at the beginning, in the middle, and at the end of the fourth
test are provided in Fig. 5.

These results suggest that the proposed control system can
effectively track the needle during the in-plane motion. An
advantage of the proposed method is its low computational
complexity. The computational time for each image sample
shown in Fig. 8, is consistently less than 30 ms. This makes
the proposed algorithm a good candidate for real-time clinical
applications. Furthermore, the presented method only relies
on US images and does not need positional information about
the position of the needle’s base or tip once the US probe is
aligned with the needle.

V. CONCLUSION AND FUTURE WORK

This paper presents an image-guided VS method for needle
tracking based on 2D US images and real-time image mo-
ments. US-based VS has been proposed before for autonomous
US imaging to a limited extent, but to the best of the author’s
knowledge, this paper is the first to introduce VS for 3-DOF
needle tracking using 2D US images. The effectiveness of
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Fig. 8. Computational time for control loop sample in scenario 4. The average
processing time for one sample is 23.9 ms, making the algorithm well-suited
for real-time applications. Image acquisition time is not included.

the proposed method is demonstrated through experimental
validation in 4 distinct scenarios. The results show that the
algorithm can successfully keep the desired needle pose in
the US images as the needle is steered.

Two desired features of a real-time tool-tracking algorithm
are its complexity in terms of both hardware and software and
its computational time. Although using 3D US imaging or
electromagnetic tracking systems can provide more informa-
tion regarding the needle position and its surroundings, these
technologies are not accessible or applicable in many real
clinical applications. On the other hand, 2D US is the current
standard used in clinics and is widely accessible. Moreover,
the computational time of the proposed algorithms is around
24 ms, which makes it suitable for deployment in real-time
clinical settings without the need for additional resources.

Future work will focus on further improving the efficiency
of the algorithm and redefining the interaction matrix to
account for out-of-plane motion and to track the needle with
higher accuracy. In addition, more precise image segmentation
will result in a better estimation of the interaction matrix
in real-time. Finally, moving away from a water tank and
conducting tests on a phantom or biological tissue can provide
more realistic results.
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